Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep


Torres-Chable O. M., Tırınk C., Parra-Cortés R. I., Delgado M. Á. G., Martínez I. V., Gomez-Vazquez A., ...Daha Fazla

Animals, cilt.15, sa.5, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 5
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/ani15050737
  • Dergi Adı: Animals
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, CAB Abstracts, EMBASE, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: anemia, classification, FAMACHA©, machine learning, support vector machine
  • Yozgat Bozok Üniversitesi Adresli: Evet

Özet

The aim of this study is to evaluate the model performance in the classification of FAMACHA© scores using Support Vector Machines (SVMs) with a focus on the estimation of the FAMACHA© scoring system used for early diagnosis and treatment management of parasitic infections. FAMACHA© scores are a color-based visual assessment system used to determine parasite load in animals, and in this study, the accuracy of the model was investigated. The model’s accuracy rate was analyzed in detail with metrics such as sensitivity, specificity, and positive/negative predictive values. The results showed that the model had high sensitivity and specificity rates for class 1 and class 3, while the performance was relatively low for class 2. These findings not only demonstrate that SVM is an effective method for classifying FAMACHA© scores but also highlight the need for improvement for class 2. In particular, the high accuracy rate (97.26%) and high kappa value (0.9588) of the model indicate that SVM is a reliable tool for FAMACHA© score estimation. In conclusion, this study demonstrates the potential of SVM technology in veterinary epidemiology and provides important information for future applications. These results may contribute to efforts to improve scientific approaches for the management of parasitic infections.