Determination of the Kothe-Toeplitz Duals over the Non-Newtonian Complex Field


Creative Commons License

Kadak U.

SCIENTIFIC WORLD JOURNAL, 2014 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume:
  • Publication Date: 2014
  • Doi Number: 10.1155/2014/438924
  • Journal Name: SCIENTIFIC WORLD JOURNAL
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Yozgat Bozok University Affiliated: No

Abstract

The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Therefore the reader may be surprised to learn that there is a uniform relationship between the corresponding operators of this calculus and the classical calculus. Several basic concepts based on non-Newtonian calculus are presented by Grossman (1983), Grossman and Katz (1978), and Grossman (1979). Following Grossman and Katz, in the present paper, we introduce the sets of bounded, convergent, null series and p-bounded variation of sequences over the complex field C* and prove that these are complete. We propose a quite concrete approach based on the notion of Kothe-Toeplitz duals with respect to the non-Newtonian calculus. Finally, we derive some inclusion relationships between Kothe space and solidness.