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Abstract. We recover the cases of solutions in the shape of bright, dark and singular
optical solitons for the self-phase modulation effect, which belongs to the type of
N. A. Kudryashov’s sextic power-law nonlinearity of refractive index. Three different
integration schemes have been implemented. These are a unified Riccati equation, our
new mapping scheme and our addendum to the common N. A. Kudryashov’s method.
All of the solitons are enlisted and the criterions of their existence are mentioned.
Finally, we extract three appropriate conservation laws.
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1. Introduction

Nowadays we witness an avalanche of studies on various nonlinearities of refractive index in
telecommunications. Kerr nonlinearity represents the most common form of self-phase
modulation, when the refractive index is proportional to the intensity of light. In more general
‘non-Kerr’ cases, it is proportional to some function of the intensity [1-5]. In other words, the
refractive index in the case of Kerr nonlinearity is a constant multiple of the intensity, while in a
non-Kerr situation, the response of optical medium sometimes depends on the intensity raised to a
positive power or, more generally, it is a sum of two terms, each of which being proportional to the
intensity raised to some positive power. Still another form of non-Kerr nonlinearity happens when
the refractive index is proportional to logarithm of the intensity, which leads to Gausson solutions,
as opposed to more common soliton solutions.

Recently, N. A. Kudryashov has suggested a number of forms for the self-phase modulation
effect, which have sparked a great interest among physicists and telecommunication engineers
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[6-16]. The present work addresses soliton solutions of the governing nonlinear Schrédinger’s
equation, which come from one of the latest forms of refractive-index nonlinearity introduced by
N. A. Kudryashov [13]. This nonlinear dependence of the refractive index involves six terms, each
of them including a power-law component. This recent nonlinearity of the refractive index still
lacks its further theoretical analysis. Moreover, this nonlinear form of the refractive index still
awaits the studies answering which of materials can be described by it.

We employ three integration algorithms which, when being applied to the governing
nonlinear Schrodinger’s equation, can reveal soliton solutions in the model. These are a unified
Riccati equation, a new mapping method and an addendum to a known Kudryashov’s scheme. It
turns out that all of these algorithms are able to yield in so-called ‘bright’, ‘dark’ and singular
soliton solutions. Our subsequent aim is to determine relevant conservation laws for the governing
model. These results accomplish our analysis of the new nonlinearity model. The details to be
sketched before the analysis are as follows.

The governing nonlinear Schrodinger’s equation with the Kudryashov’s sextic power law for
the refractive index can be written as [13]
2n

3n 4n

+b, |q| +b, |q

5n+b6|q|6n)q=0’ (1)

where a and bj,( j=12,.., 6) are real-valued constants, while x and ¢ denote the indices of the

ig, +aq_, +(bl |q|'7 +b, |q| +b, |q|

variables ¢(x,?) . In particular, ¢, and g,, represent respectively the first- and second-order partial
derivatives of ¢(x,¢) with respect to the variables ¢ and x. The dependent variable ¢(x,¢) is
complex-valued and describes the optical pulse profile. Here a represents the coefficient of
chromatic dispersion, b; are the power-law nonlinearity parameters accounting for the self-phase

modulation, and » refers to the type of power-law nonlinearity. Finally, the first term in Eq. (1)
accounts for the linear temporal evolution.
The rest of the article is organized as follows. We elaborate mathematical analysis in

Section 2. In Sections 3, 4 and 5, our algorithms reveal and describe quantitatively the bright, dark
and singular optical soliton solutions of Eq. (1). The corresponding conservation laws are enlisted
in Section 6. Finally, some conclusive observations are made in Section 7.

2. Mathematical preliminaries

We assume that Eq. (1) has a solution in the form

q(x’t)zgo(é)ei(—kﬂwtw) , §=x—l)l, (2)
where v, @, k and 0 are nonzero constants to be determined. In particular, the parameter v
represents the soliton velocity. From the phase components, £ defines the wave number of the
soliton, while @ is the frequency and 6 the phase constant. Here go(f) represents a real-valued
function that stands for the pulse shape.

Inserting Eq. (2) into Eq. (1) and separating real and imaginary parts, one has

ago" _(a) +ak2)go+b1go“” +b2¢1+2n +b3¢1+3n +b4g01+4n +b5g01+5n +b6g01+6n =0 (3)
and

v=-2ak, “4)
where @” denotes the second-order derivative with respect to its variable and the remaining

derivatives involve exponents. Hence, Eq. (4) gives the velocity of the soliton. Setting
1

o(&)=H (&), ()

with H (5) being a new positive function of &, we get the equation
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7 8
a[3nHH"+ (1 —311)H'2J—9n2 (a)+ ak’® )H2 +9n’b H3 +9n°b,H?

(6)
10 u
+9n’b,H* +9n°b,H 3 +9n’b,H * +9n°b,H* =0
For the purposes of integrability, one must select
b=b,=b,=b=0. (7
Consequently, Eq. (6) can be modified to
a|3nHH" +(1-3n) H? | -9 (+ak® | H* +9n°b,H* +9n°b H' = 0. (8)

Balancing HH" with H* in Eq. (8) yields in the balance number N =1 (N =1+ n). This
concept stems from the balancing principle for the existence of solitons. It states that a soliton is
outcome of a delicate balance between dispersion and nonlinearity. Thus, this balance should refer
to the highest-order dispersion and the highest-order of nonlinearity.

Now the main problem is to solve Eq. (8), using the three integration schemes mentioned
above, i.e. the unified Riccati equation method, our new mapping scheme and our addendum to the
common Kudryashov’s algorithm. These integration mechanisms will be implemented in the next
three sections to retrieve the soliton solutions of the governing model.

3. Unified Riccati equation

According to this method, we assume that Eq. (8) has the formal solution

H(&)=a,+o,F (&), )
where o, and @, are constants to be determined, such that ¢, # 0. The function F (&) satisfies
the Riccati equation

F'(§)=C,+CF(&)+C,F* (&), (10)
where C, (j = 0,1,2) are constants (C, #0). It is well known (see, e.g., Ref. [17]) that Eq. (10)
has the following fractional solutions:

rtanh ﬁg +7,
c A 2 s

F(§)=—"2-— , A>0, (rP+77)=0, 11
(®)=-3¢"2¢, N (i +7) (11)
rl+r2tanh 75

r,tan Ef -7,
¢ VoA’ 2

Fe)="3¢ "0, r+rtan[ﬁc5} L A<, (i +r7)%0,  (12)
etan| T
¢ 1,
A= e e, 070 "

where 7, (e=1, 2,3, 4) are arbitrary constants and ¢, implies an integration constant, with

A= (Cl2 —4C0C2). Substituting Eqgs. (9) and (10) into Eq. (8), collecting all the coefficients near
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F'(&). (1=0,1,2,3,4) and equalling them to zero, we have the following set of algebraic
equations:

F*(&):07 [9n’alb, +aC; (3n+1)]=0,

F(&):e [36112050051%6 +6ana,C; +3ana,C,C, +9n’a’b, + 2aa,C,C2J =0,

F(&):e [—54n2a§alb6 —9ana,C,C, —27n’a,a,b, +9n’a, (a) +ak’ )—2aoc,C0C2 —aa,CfJ =0

(14
F(&):q [—36n2a3b6 —6ana,C,C, —3ana,C} +3ana,C,C, —27n2a§b3J
+a, [18112050 (a) +ax’ ) —2aa,C,C, J =0,
F°(&):9n° ayb, +3ana,e,C,C, —3anaCy +9n’ayby, —9n’ o, (a)+ ak2)+ ao[C; =0.
On solving the above equations with the aid of Maple, one can obtain
C+G) 3n+1
n=n, wzw—akz, a,=0, a, =+C, —a(Lz),
9n 9n°b,
(15)
_(G+2a) 0 (Bn+2)(G+G) [ 95,
0 4 " 9 an® (3n +1)’

provided that ab, <0 . Since A =(C,+C,)’ >0, Eq. (1) has the soliton solution

1
) o
ol e (Cl+C2)(rltanh[2(cl+C2)(x+2akt)}+r2j
q(x1) =% [-——5—
7 +r2tanh[ (C+ Cz)(x+2akt)}

t+ - C +
36n°h, |

ei(—kx+wt+9) ) (16)

1
2
In particular, if the conditions 7 #0 and r, =0 hold true in Eq. (16), we deduce that Eq. (1)

has the dark soliton solutions:
1

1 2 o
q(x,t)={i —%{Q+(C1+C2)tanh[(cl+cz)§x+ “kt)ﬂ} e/ (17)
6

Alternatively, if we set =0 and 7, #0 in Eq. (16), then Eq. (1) acquires the singular

soliton solutions:

1

q(x.t)= {+ M{q +(G +C2)coth[(c‘ G )2(x+2“k’)ﬂ}3" ehrer?) (18)

T\ 36nb,

4. Mapping scheme

In the frame of our new mapping method, we adopt that Eq. (8) has the following formal solution:
H(&)=A,+AF(&)+A,F* (&), (19)

where 4y, A, and A4, are constants to be determined, such that 4, # 0, and the function F (f )
satisfies the following first-order equation:

F’z(f)zr+pF2(§)+%F4(§)+§F6(§). (20)
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Here 7, p, q,, s are constants (s = 0 ). Substituting Egs. (19) and (20) into Eq. (8), collecting
the coefficients near each power F (&)’ (F'(g))j ., (€=0,1,2,.,8,j=0,1) and setting these
coefficients to zero, we arrive at the algebraic equations

1
F*(&): 5‘422 [27n2A22b6 +4as(3n+ 1)} =0,

F’ (f):%AIA2 [108;121422]96 +as(21n +4)J =0,

FO(&):36n4; (Aob6 +%b3J+%A§ (1620 4, +3agq, (3n+2) |+ 8and, ;s

+2asA’ (n +éj =0,

F*(£): 4] 360° b (A7 +34,4,)+ 270" A1, + 3ansd, +2aq, 4, (3n-+1) | =0,

F* (5)%54/13% (3n+1)+4ad; p+9and, A,q, ~9n* (0 +ax’ ) 4

270 Ayb, (47 + 4y Ay ) +90°b, (6.4; 43 +124, 4 4, + A1) =0, (21)
F*(£):= 4, [ ~1080° 4] A,b, 361" A, 47D, — S4n’ A, Ab, =90 A7b, +18(w+ak’ )n’ 4, |
+4,[3apA, (3n+4) +3ang, 4, | =0,

F?(£):360° 4g A,bs +54n> A; ATb, + 270> Ayb ( Ay Ay + A7 )= 9n* (0 +ak” ) (4 +2.4,4, )
+12anpA, A, — 6anrA? + apA? +4ard: =0,

F(£):= 4] =36n> 40, — 270 4b, +184,n° (0+ ak® ) = 3anpd, + 6anrd, —4ard, | =0,
F*(&):a(1-3n) A’r +6anrd, A, -9’ 4; (@ +ak™ )+ 9n’ A3b, +9n® 4;b, = 0.

With reference to the work [18], one can distinguish three types of solutions of the above

algebraic equations, which are outlined below.
2

3q; 1 . . .
D and r= 6p into Egs. (21) and solving them with Maple or
16p 27¢,

Mathematica, we have the following results:

Type 1. Substituting s =

3(3n+1)b; 2
———a

n=mn, w = 3
(3n+2) b,
(3n+1)b,
A= 0%
(3n+2)b,
4, =0, (22)
_ag, (3n+2)
P 27n%,
3 _81n2 (3n+1)b32
P b, Gt 2y

From Egs. (2), (5), (19), (22) and the term F,(&)—F, (&) (see the step 5 in Ref. [18]), we

obtain the soliton solutions:
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27n* (3n+1)b? v
4tanh m (x + 2akt)
ab_(3n
q(x’t)— ((:::I’l +;))bb 1— 2 e(kx+(ut+9) (23)
n+
| 3+ tanh? M(x+2akt)
4ab, (Bn+2)
and
RS
[ 270 (3n+1)b2 v
4coth 4ab, (3 12y x+2akt
ab_(3n
Q(X,l‘)= ((;n+;)bb 1- = (kx+(ut+9)’ (24)
n+
3+ coth? { 27n° (3”+1)b +2akt
4ab, (Bn+2)°

where b.,b, >0 and ab, > 0. Moreover, we obtain also the periodic solutlons

Atan?| & 27n (3n+1)b2( ) kt)
— 72 (x+2a
( t) (3I’l+1)b3 - 4ab (3n+2)
x’ =
! (3n+2)b, 270 (3n+1)b?
3—tan’| e —(x+2akt)
4ab,(3n+2)’
and
4cot?| & 27”2(3n+1)b32( +2akt)
-2 (x+2a
( t) (3I’l+1)b 4ab6(3n+2)2
x,t)=
! (3n+2)b 271" (3n+1)b}
3—cot’| ¢ ——3(x+2akt)
4ab,(3n+2)’

bbb, >0 ab, <0

where and ¢ =+1.

3q;
16p

Type 2. Substituting s =

Mathematica, one has
(3n+1)b;
(3n+2)'h,
(3n+1)b,
(3n+2)b,’
4, =0,
_aq,(3n+2)
9n’b,
9n* (3n+1)b;
4ab, (311 2)°
From Egs. (2), (5), (19), (27) and the terms F; (&),

0

2

arrive at the dark-soliton solutions

—a

k2

} i(—kx+at+0) (25)

gl

ei(—lor+wt+9)

(26)

b

=0 into Egs. (21) and solving them with Maple or

27)

F, (&) (see the step 5 in Ref. [18]), we
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(3n+1)b,

and the singular-soliton solutions

(n+1)b, |

S R R TEm Ty

where bb, <0, ab, <0 and ¢ =+1.

i 2 2
1_tanh[g on* (3n+1)b;

4ab,(3n+2)

4ab,(3n+2)

2 2
1_Coth{g on*(3n+1)b?

(x+ 2akt)ﬂ

(x + 2akt)J] ei(—h+wt+9) ,

i(—kx+ot+0
ez( t+0)

(28)

(29)

Type 3. Substituting » =0 into Egs. (21) and solving them with Maple or Mathematica, we

obtain
n=n,
(3n+1)b; 5
(3n+2)" b,
3 (311+1)b3 _ _aq, (3n+2) (30)
" (3n+2)b, A= A=
6 3
__9112 (3n+1)b32 _ aq; (3n+2)’h,
P b, Gnr 2 C T 12 (Brr 1) B2

From Egs. (2), (5), (19), (30) and the term F, (&)—F, (&) (see the step 5 in Ref. [18]), we obtain

the following soliton solutions:

2 1 2
2sech2[ —M(x+2akr)]
3n+1)b abs (N i(~kx+ot+
7x0)= _((3n+2))133 S| oetLen
6 2 2
4—|1+ etanh —M(x+2akt)
4ab,(3n+2)
_ L
3n
2 1 2
2csch2[ —M(x+2akt)]
3I’l+1 b a 6 n i(—Kkx+ot+i
1) _((3n+2))1?3 1+ : : | 6D
6
4 —| 1+ ecoth —w(x+2akt)
4ab,(3n+2)
_ RS
2 152 3n
sech? —M(x+2akt)
_ (37’! + 1)b3 4ab6 (37’! + 2) i(~kv+ ot +0)
20+)= G| on” (3n+1)b2 ’ .
6
2| 1+ etanh —M(x+2akt)
4aby(3n+2)
and

44
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9n* (3n+1)b? »
csch? —w(yﬁmkt)
(3n+1)b 4ab,(3n+2)* ,
q(x,l): _ : 2b3 1+ ez(—t«x+wt+9)’(34)
2 2
( " ) ’ 2| 1+ &coth —M(x+2akt)
4ab,(3n+2)°

provided that b,b, <0, ab, <0 and ¢ =+1.

5. Addendum to the Kudryashov’s method

Recently, Kudryashov has suggested the approach to integrating equations of the type which is
studied in the present work [9]. We summarize our addendum to this Kudryashov’s method as
follows.

First, we assume that Eq. (8) has the formal solution

H(E)=> BR*(£), (35)

where Bs (§=0,1,2,..., M) are constants to be determined (B,, #0) and R(&) satisfies the

auxiliary ordinary differential equation

R (&)=R*(&)[1- xR (&) ]I’k , 0<k =1, (36)
with y being a constant. It is easy to show that Eq. (36) has the solutions
1
44 »
Ré)=|—————+ , 37
() {4/121{1’5 + kP } G7)

where A4 is a nonzero constant and p a positive integer. In order to apply the method [6, 19], we
first balance HH" with H* in Eq. (8), thus arriving at
M +2p=4M =>M =p. (38)
Let us now discuss the following specific cases.
Case 1. Let us choose p =2 and M = 2. Then we deduce from Eq. (35) the relation

H(&)=B,+BR(&)+B,R* (&), (39)
where By, B, and B, are constants to be determined (B, #0) and the function R(gz ) satisfies
Eq. (36). Substituting Eq. (39) and (36) into Eq. (8), collecting all the coefficients near each
power of [R((S)T‘ and [R'((S)TZ . (9,=0.1,2,..8, ¢, =0,1) and setting each of these

coefficients to zero, we obtain a system of algebraic equations, which can be solved using Maple.
We have

44ln?
n=n, = anzk—akz,
On
4 3n+1)In’k
B,=B =0, B, = M (40)
9n"b,
b, =0,

where ayb, > 0. In this case we conclude that Eq. (1) has the soliton solutions
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1

4ay (3n+1)In*k .
q(xyt):{ al( n+ )Il |: 44 ):|} ez(—kx+(ot+9) (41)

97’!2b6 4A2k2(x+2ul(t) + lk—z(xﬂum

In particular, if we have y =44* in Eq. (41), then Eq. (1) has the bright-soliton solutions

1

4 3 l 1 2k 3n )
q(x,t) = { %sech[Z(x+ Zakt)lnk}} el(—h+wt+9) ’ (42)
R Dg

provided that ab, >0 . On the other hand, if we set y =44 in Eq. (41), Eq. (1) has the singular-

soliton solutions
1

4a(3n+1)In’k SN

q(x.1)= { —% csch[ 2(x+2akt) lnk}} el(hronst) (43)
6

provided that ab, <0.

Case 2. Let us choose p = 3 and M = 3. We obtain from Eq. (35) that

H(&)=B,+BR(E)+B,R* (&) +B,R (&), (44)

where By, By, B, and Bj are constants to be determined (B, # 0) and the function R(f) satisfies

Eq. (36). Substituting Egs. (44) and (36) into Eq. (8), collecting all the coefficients near each
power of [R(f)]q' and [R'(f)]qz (¢,=0,1,2,..12, ¢, =0,1) and setting each of these
coefficients to zero, we obtain a system of algebraic equations which can be solved using Maple.
As a result, we have

B aln’k

n=n, w= >
n

2
ak”,

ay(3n+1)In’k

B,=B =B,=0, B, = b
3

(45)

b, =0,
provided that ayb, > 0. In this case, Eq. (1) has the soliton solutions:

1

1)In? o
q(x’t) ={ a;((3i’l+ ) n k |: 4A ):|} ez(—b{+n)t+9) . (46)

nzb(, 4A2k3(x+2m<t) T Zk—}(x+2at(t

In particular, if we set y =44 in Eq. (46), Eq. (1) has the bright-soliton solutions:

1

4 1)In® "o
q(x,t)={ Lb)nksechp(x+2akt)lnk}} o!Chrersd) @7)
n O

provided that ab, >0 . Finally, if we set y =—44" in Eq. (46), Eq. (1) has the singular-soliton

solutions:
1

’b,

1 Dg

3n
csch[B(x + 2akt)lnk}} o/ (Therorto) R (48)
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provided that ab, <0 . Similarly, one can find many other solutions by choosing the other values

of p and M. Note that the case p = 1 and M = 1 has been omitted since it does not work.

6. Conservation laws
From Eq. (7), one can see that Eq. (1) collapses into the following form for integrability purposes:

iq, +aq,_ + (b3 |q|3'7 + b, |q|6'7 )q =0. (49)
Its bright single-soliton solutions are given by
1
q(x.1) = Asech? [B(x —ut)} olhrensd) (50)

where 4 is the amplitude of the soliton, B its inverse width and v its velocity. The model given by
Eq. (49) reveals three conserved quantities as indicated earlier in Ref. [2]: the power P, the linear
momentum M and the Hamiltonian A [19]. They are given by (see Ref. [20])

{5)3)
refura- el )
M
6n 2
w v o))
a 6n 2 (52)

M = j (q*qx—qq:)dx= B F( 1 1}

—0

6n 2
and
2b,
_n+2

eI el
a 2 2 n 3 n
(2 2K B F(1+1) “(ni2)B F(lj &)

3n 2 3n
1 1
I'l—|T'| =
2b6A2(3n+l) (3}’[} (2j

(3n+1)(3n+2)B F(1+1j '

3n 2

3n+2 _ b6 2(3n+1)
ol

2
alq,

7. Conclusion

The main aim of the present work has been to find new exact solutions of the problem linked with
the Kudryashov’s sextic power law for the nonlinear refractive index. These solutions include the
ones associated with the optical solitons. Three different integration algorithms have been utilized
to solve the problem: the unified Riccati equation, the new mapping method, and the technique
which represents our addendum to the earlier N. A. Kudryashov’s method.

After extensive mathematics implemented with the three integration algorithms, we have
arrived at the same conclusion: the N. A. Kudryashov’s model with the sextic power-law
nonlinearity collapses to the special case of triple power-law format, as given by Eq. (49) [2, 3, 5,
19]. If one hypothetically replaces 3n with m in Eq. (49), this picture becomes very clear [2, 3, 5,
19]. Hence, the final results of our study prove the claims declared by us.
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Anomauin. Odepocano po3g’szku y U0l «ICKPABUXY, «MEMHUXY» [ CUHSYIAPHUX ONMUYHUX
conimonie 01 egexmy camo@azHoi MoOyIAYil, AKUL HALEHCUMs 00 Muny CmeneHegor
HeNHIIHOCMI  NOKA3HUKA — 3AJIOMAEHHS — WOCMOo20 NOpadKy, wo Oyra pauiue Onucama
H. A. Kyopsimosum. Bnposaodoiceno mpu pizni cxemu inmeepyeanns. Lle ymuigixosarne pisHsiHHSA
Pixkami, naw noeusi memoo 6i000padiceHuss mMa pO3GUMOK 3A2AbHONPULHAMO20 Memooy
H. A. Kyopsuuosa. Hasedeno eupasu 01 6Cix CONIMOHI6 ma nepepaxo8ano Kpumepii ixHb02o
icnysanns. Q0epaicano maxoic mpu 6i0N0GiOHI 3aKOHU 30ePedCeHHs.
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