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Abstract. We recover the cases of solutions in the shape of bright, dark and singular 
optical solitons for the self-phase modulation effect, which belongs to the type of 
N. A. Kudryashov’s sextic power-law nonlinearity of refractive index. Three different 
integration schemes have been implemented. These are a unified Riccati equation, our 
new mapping scheme and our addendum to the common N. A. Kudryashov’s method. 
All of the solitons are enlisted and the criterions of their existence are mentioned. 
Finally, we extract three appropriate conservation laws.  
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1. Introduction 
Nowadays we witness an avalanche of studies on various nonlinearities of refractive index in 
telecommunications. Kerr nonlinearity represents the most common form of self-phase 
modulation, when the refractive index is proportional to the intensity of light. In more general 
‘non-Kerr’ cases, it is proportional to some function of the intensity [1–5]. In other words, the 
refractive index in the case of Kerr nonlinearity is a constant multiple of the intensity, while in a 
non-Kerr situation, the response of optical medium sometimes depends on the intensity raised to a 
positive power or, more generally, it is a sum of two terms, each of which being proportional to the 
intensity raised to some positive power. Still another form of non-Kerr nonlinearity happens when 
the refractive index is proportional to logarithm of the intensity, which leads to Gausson solutions, 
as opposed to more common soliton solutions.  

Recently, N. A. Kudryashov has suggested a number of forms for the self-phase modulation 
effect, which have sparked a great interest among physicists and telecommunication engineers  
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[6–16]. The present work addresses soliton solutions of the governing nonlinear Schrödinger’s 
equation, which come from one of the latest forms of refractive-index nonlinearity introduced by 
N. A. Kudryashov [13]. This nonlinear dependence of the refractive index involves six terms, each 
of them including a power-law component. This recent nonlinearity of the refractive index still 
lacks its further theoretical analysis. Moreover, this nonlinear form of the refractive index still 
awaits the studies answering which of materials can be described by it.  

We employ three integration algorithms which, when being applied to the governing 
nonlinear Schrödinger’s equation, can reveal soliton solutions in the model. These are a unified 
Riccati equation, a new mapping method and an addendum to a known Kudryashov’s scheme. It 
turns out that all of these algorithms are able to yield in so-called ‘bright’, ‘dark’ and singular 
soliton solutions. Our subsequent aim is to determine relevant conservation laws for the governing 
model. These results accomplish our analysis of the new nonlinearity model. The details to be 
sketched before the analysis are as follows. 

The governing nonlinear Schrödinger’s equation with the Kudryashov’s sextic power law for 
the refractive index can be written as [13] 

 2 3 4 5 6
1 2 3 4 5 6 0n n n n n n

t xxiq aq b q b q b q b q b q b q q        ,         (1) 

where a  and  1 2 6jb , j , ,...,  are real-valued constants, while x and t denote the indices of the 
variables ( )q x,t . In particular, qt and qxx represent respectively the first- and second-order partial 
derivatives of ( )q x,t  with respect to the variables t and x. The dependent variable ( )q x,t  is 
complex-valued and describes the optical pulse profile. Here a represents the coefficient of 
chromatic dispersion, jb  are the power-law nonlinearity parameters accounting for the self-phase 
modulation, and n refers to the type of power-law nonlinearity. Finally, the first term in Eq. (1) 
accounts for the linear temporal evolution. 

The rest of the article is organized as follows. We elaborate mathematical analysis in 
Section 2. In Sections 3, 4 and 5, our algorithms reveal and describe quantitatively the bright, dark 
and singular optical soliton solutions of Eq. (1). The corresponding conservation laws are enlisted 
in Section 6. Finally, some conclusive observations are made in Section 7. 

2. Mathematical preliminaries 
We assume that Eq. (1) has a solution in the form 

     i kx tq x,t  e         ,   x t   , (2) 
where  ,  , k and   are nonzero constants to be determined. In particular, the parameter   
represents the soliton velocity. From the phase components, k defines the wave number of the 
soliton, while   is the frequency and   the phase constant. Here      represents a real-valued 
function that stands for the pulse shape.  

Inserting Eq. (2) into Eq. (1) and separating real and imaginary parts, one has  

 2 1 1 2 1 3 1 4 1 5 1 6
1 2 3 4 5 6 0n n n n n na ak b b b b b b                                        (3) 

and 
2ak   ,                                                                               (4) 

where "  denotes the second-order derivative with respect to its variable and the remaining 
derivatives involve exponents. Hence, Eq. (4) gives the velocity of the soliton. Setting 

   
1
3nH   ,                                   (5) 

with  H   being a new positive function of  , we get the equation 
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.               (6) 

For the purposes of integrability, one must select 

1 2 4 5 0b b b b    .                      (7) 

Consequently, Eq. (6) can be modified to 

   2 2 2 2 2 3 2 4
3 63 1 3 9 9 9 0'a nHH n H n ak H n b H n b H         .          (8) 

Balancing HH   with 4H  in Eq. (8) yields in the balance number 1N   (N = 1  n). This 
concept stems from the balancing principle for the existence of solitons. It states that a soliton is 
outcome of a delicate balance between dispersion and nonlinearity. Thus, this balance should refer 
to the highest-order dispersion and the highest-order of nonlinearity.  

Now the main problem is to solve Eq. (8), using the three integration schemes mentioned 
above, i.e. the unified Riccati equation method, our new mapping scheme and our addendum to the 
common Kudryashov’s algorithm. These integration mechanisms will be implemented in the next 
three sections to retrieve the soliton solutions of the governing model. 

3. Unified Riccati equation 
According to this method, we assume that Eq. (8) has the formal solution 

   0 1H F     ,  (9) 

where 0  and 1  are constants to be determined, such that 1 0  . The function  F   satisfies 

the Riccati equation 

     2
0 1 2F C C F C F     ,                                      (10)  

where  0 1 2jC j , ,  are constants ( 2 0C  ). It is well known (see, e.g., Ref. [17]) that Eq. (10) 

has the following fractional solutions: 

 
1 2

1

2 2
1 2

Δtanh
2Δ

2 2 Δtanh
2

r r
C

F
C C

r r






  
                 

,  2 2
1 2Δ 0 0   , r r   ,         (11) 

 
3 4

1

2 2
3 4

Δtan
2Δ

2 2 Δtan
2

r r
C

F
C C

r r






  
                  

,  2 2
3 4Δ 0 0   , r r   ,       (12) 

  1

2 2 0

1
2
CF
C C


 

  


, Δ 0 ,                                      (13) 

where  1 2 3 4er e , , ,  are arbitrary constants and 0  implies an integration constant, with 

 2
1 0 2Δ 4C C C  . Substituting Eqs. (9) and (10) into Eq. (8), collecting all the coefficients near 
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   0 1 2 3 4lF , l , , , ,   and equalling them to zero, we have the following set of algebraic 

equations: 
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(14) 

On solving the above equations with the aid of Maple, one can obtain 

   

    
 

2
1 2 2

0 1 22 2
6

2 1 1 2 6
0 3 2

3 1
0

9 9

2 3 2 9
4 9 3 1

a C C a n
n n, ak , , C ,
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C C n C C b
C , b ,
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                   (15) 

provided that 6 0ab  . Since 2
1 2Δ ( ) 0C C   , Eq. (1) has the soliton solution  

         

  
 

1
3

1 2 1 1 2 2

12
6

1 2 1 2

1tanh 2
3 1 2

136 tanh 2
2

n

i kx t

C C r C C x akt r
a n

q x,t C e 
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.  (16) 

In particular, if the conditions 1 0r   and 2 0r   hold true in Eq. (16), we deduce that Eq. (1) 

has the dark soliton solutions: 

          

1
3

1 2
1 1 22

6

3 1 2
tanh

236

n
i kx ta n C C x akt

q x,t C C C  e 
n b

   
             

     
 .(17) 

Alternatively, if we set 1 0r   and 2 0r   in Eq. (16), then Eq. (1) acquires the singular 

soliton solutions: 

           

1
3

1 2
1 1 22

6

3 1 2
coth

236

n
i kx ta n C C x akt

q x,t C C C e 
n b

   
             

     
. (18) 

4. Mapping scheme 
In the frame of our new mapping method, we adopt that Eq. (8) has the following formal solution: 

     2
0 1 2H A A F A F     ,                                                  (19) 

where A0, A1 and A2 are constants to be determined, such that 2 0A  , and the function  F   
satisfies the following first-order equation: 

       2 2 4 61

2 3
q sF r pF F F        .                                (20) 
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Here 1r, p, q , s  are constants ( 0s  ). Substituting Eqs. (19) and (20) into Eq. (8), collecting 

the coefficients near each power       0 1 2 8 0 1
jeF F , e , , ,.., , j ,     and setting these 

coefficients to zero, we arrive at the algebraic equations 
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0 2 6 0 1 6 0 3 0 2 1 1 0 2

2 2 2
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F A n A b n A b A n ak anpA anrA arA ,

F a n A r anrA A n A ak n A

 

 

 

     

    

          

     3 2 4
3 0 69 0b n A b . 

   (21) 

With reference to the work [18], one can distinguish three types of solutions of the above 
algebraic equations, which are outlined below. 

Type 1. Substituting
2
13

16
q

s
p

  and 
2

1

16
27
pr
q

  into Eqs. (21) and solving them with Maple or 

Mathematica, we have the following results:  
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.       (22) 

From Eqs. (2), (5), (19), (22) and the term    1 4F F   (see the step 5 in Ref. [18]), we 

obtain the soliton solutions: 
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and 
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,    (24) 

where 3 6 0b b   and 6 0ab  . Moreover, we obtain also the periodic solutions: 
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,    (26) 

where 3 6 0b b  , 6 0ab   and 1   . 

Type 2. Substituting 
2
13

16
q

s
p

  and 0r   into Eqs. (21) and solving them with Maple or 

Mathematica, one has 
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. (27) 

From Eqs. (2), (5), (19), (27) and the terms    5 6F , F   (see the step 5 in Ref. [18]), we 

arrive at the dark-soliton solutions 
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      (28) 

and the singular-soliton solutions  
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,     (29) 

where 3 6 60 0b b , ab   and 1     

Type 3. Substituting 0r   into Eqs. (21) and solving them with Maple or Mathematica, we 
obtain 
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.                           (30) 

From Eqs. (2), (5), (19), (30) and the term    7 10F F   (see the step 5 in Ref. [18]), we obtain 

the following soliton solutions: 
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and 
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provided that 3 6 0b b  , 6 0ab   and 1   . 

5. Addendum to the Kudryashov’s method  
Recently, Kudryashov has suggested the approach to integrating equations of the type which is 
studied in the present work [9]. We summarize our addendum to this Kudryashov’s method as 
follows. 

First, we assume that Eq. (8) has the formal solution 

   
0

 
M

S
S

S

H B R 


 ,  (35) 

where BS  0 1 2S , , ,..., M  are constants to be determined ( 0MB  ) and  R   satisfies the 

auxiliary ordinary differential equation 

     2 2 2 21 lnpR R R k        , 0 1  k  ,  (36) 

with   being a constant. It is easy to show that Eq. (36) has the solutions 

 
1

2

4
4

p

p p

AR
A k k 

 

 
   

,  (37) 

where A is a nonzero constant and p a positive integer. In order to apply the method [6, 19], we 
first balance HH   with 4H  in Eq. (8), thus arriving at 

2 2 4M p M M p    .  (38) 

Let us now discuss the following specific cases. 
Case 1. Let us choose p = 2 and M = 2. Then we deduce from Eq. (35) the relation 

     2
0 1 2H B B R B R     ,  (39) 

where B0, B1 and B2 are constants to be determined ( 2 0B  ) and the function  R   satisfies 
Eq. (36). Substituting Eq. (39) and  (36) into Eq. (8), collecting all the coefficients near each 

power of   1qR     and    2

1 20 1 2 8 0 1
qR , q , , ,... ,  q ,      and setting each of these 

coefficients to zero, we obtain a system of algebraic equations, which can be solved using Maple. 
We have  
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                             (40) 

where 6 0a b  . In this case we conclude that Eq. (1) has the soliton solutions 
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In particular, if we have 24A   in Eq. (41), then Eq. (1) has the bright-soliton solutions 
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provided that 6 0ab  . On the other hand, if we set 24A    in Eq. (41), Eq. (1) has the singular-
soliton solutions 
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provided that 6 0ab  .  
Case 2. Let us choose p = 3 and M = 3. We obtain from Eq. (35) that 

       2 3
0 1 2 3H B B R B R B R       ,                                                  (44) 

where B0, B1, B2 and B3 are constants to be determined ( 3 0B  ) and the function  R   satisfies 
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provided that 6 0a b  . In this case, Eq. (1) has the soliton solutions: 
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.               (46) 

In particular, if we set 24A   in Eq. (46), Eq. (1) has the bright-soliton solutions: 
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provided that 6 0ab  . Finally, if we set 24A    in Eq. (46), Eq. (1) has the singular-soliton 
solutions: 
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provided that 6 0ab  . Similarly, one can find many other solutions by choosing the other values 
of p and M. Note that the case p = 1 and M = 1 has been omitted since it does not work. 

6. Conservation laws 
From Eq. (7), one can see that Eq. (1) collapses into the following form for integrability purposes:  

 3 6
3 6 0n n

t xxiq aq b q b q q    .  (49) 

Its bright single-soliton solutions are given by  

     
1
3sech i kx tnq x,t A  B x t e         ,  (50) 

where A is the amplitude of the soliton, B its inverse width and   its velocity. The model given by 
Eq. (49) reveals three conserved quantities as indicated earlier in Ref. [2]: the power P, the linear 
momentum M and the Hamiltonian H [19]. They are given by (see Ref. [20])  
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7. Conclusion 
The main aim of the present work has been to find new exact solutions of the problem linked with 
the Kudryashov’s sextic power law for the nonlinear refractive index. These solutions include the 
ones associated with the optical solitons. Three different integration algorithms have been utilized 
to solve the problem: the unified Riccati equation, the new mapping method, and the technique 
which represents our addendum to the earlier N. A. Kudryashov’s method. 

After extensive mathematics implemented with the three integration algorithms, we have 
arrived at the same conclusion: the N. A. Kudryashov’s model with the sextic power-law 
nonlinearity collapses to the special case of triple power-law format, as given by Eq. (49) [2, 3, 5, 
19]. If one hypothetically replaces 3n with m in Eq. (49), this picture becomes very clear [2, 3, 5, 
19]. Hence, the final results of our study prove the claims declared by us. 
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Анотація.  Одержано  розв’язки  у  вигляді  «яскравих»,  «темних»  і  сингулярних  оптичних 
солітонів  для  ефекту  самофазної  модуляції,  який  належить  до  типу  степеневої 
нелінійності  показника  заломлення  шостого  порядку,  що  була  раніше  описана 
Н. А. Кудряшовим.  Впроваджено  три  різні  схеми  інтегрування.  Це  уніфіковане  рівняння 
Ріккаті,  наш  новий  метод  відображення  та  розвиток  загальноприйнятого  методу 
Н. А. Кудряшова.  Наведено  вирази  для  всіх  солітонів  та  перераховано  критерії  їхнього 
існування. Одержано також три відповідні закони збереження. 


