Effect of stacking sequence on the mechanical properties of non-interlaced multiaxial jute yarn/epoxy composites


JOURNAL OF COMPOSITE MATERIALS, vol.56, no.13, pp.2083-2094, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 56 Issue: 13
  • Publication Date: 2022
  • Doi Number: 10.1177/00219983221090580
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Chimica, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Page Numbers: pp.2083-2094
  • Keywords: Natural fiber composites, jute fiber, non-interlaced multiaxial structure, stacking sequence, mechanical properties, FIBER COMPOSITES, NATURAL FIBERS, BAST FIBERS, FABRICATION, BIOCOMPOSITES, PERFORMANCE, GLASS
  • Yozgat Bozok University Affiliated: Yes


Polymer composites reinforced with natural bast fibers have attracted great attention in the past few decades due to increasing environmental awareness and various advantages of these materials in terms of mechanical properties, sustainability, renewability, and biodegradability. In this study, non-interlaced multiaxial jute fabric/epoxy composites were produced. First, unidirectional (UD) jute fabrics were produced using a semi-automatic dobby loom. Then these UD fabrics were stacked one on top of the other at different orientation angles to the material direction. Four different stacking sequences were used such as [0 degrees/0 degrees/0 degrees/0 degrees], [0 degrees/90 degrees/90 degrees/0 degrees], [0 degrees/+45 degrees/-45 degrees/0 degrees], and [0 degrees/+30 degrees/-30 degrees/0 degrees]. Basket 2/2 weave woven fabric composites were also produced for comparison purposes. Tensile and flexural properties of these composites were characterized. The results showed that all the non-interlaced structures showed higher tensile strength, tensile modulus, flexural strength and flexural modulus when compared to those of the basket weave structure and neat epoxy. Tensile strength and modulus increased as the angle that jute yarns make with the material direction decreases. However, a significant difference between the flexural strength and moduli of the non-interlaced structures, that is, [0 degrees/0 degrees/0 degrees/0 degrees], [0 degrees/+30 degrees/-30 degrees/0 degrees], [0 degrees/+45 degrees/-45 degrees/0 degrees], [0 degrees/90 degrees/90 degrees/0 degrees] was not detected. This was attributed to the fact that the flexural properties of the composite samples were determined by the yarn alignment in top and bottom layers without regard to the middle layers which contained oriented fibers in various angles.