SURFACE REVIEW AND LETTERS, cilt.29, sa.11, 2022 (SCI-Expanded)
In this work, initially, the raw AISI 52100 bearing steel was heat-treated to obtain 40 HRC and 45 HRC workpiece hardness. Further, dry hard turning tests were carried out to study the impact of workpiece hardness (H), cutting speed (v), feed (f), and depth of cut (a) on cutting force (Fy), surface roughness (Ra), and sound intensity (SI). An economically viable PVD-coated carbide turning tool was implemented for the experiments. The Taguchi L-18 (2-3 mixed level) design of experiments was employed to establish the experimental plan in order to save the experimental time, energy, and cost of manufacturing. The results disclosed that the feed has the prevailing consequence on surface roughness with a 96.3% contribution, while it also significantly affects the cutting force with a contribution of 13.8%. The contribution of cutting speed and workpiece hardness on the cutting force was reported as 48.3% and 35.1%, respectively. Higher workpiece hardness required more energy for plastic deformation as a result the cutting force increases with leading hardness. The sound intensity was dominantly influenced by depth of cut (53.3%) and cutting speed (40%). Finally, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was performed to determine the optimum machining parameters. According to the TOPSIS, the optimum level of cutting parameters was predicted as 40 HRC hardness (H), 150 m/min cutting speed (V), 0.15 mm/rev feed (f), and 0.1 mm depth of cut (a) while the optimal result of Fy, SI, and Ra were noted as 27.66 N, 70.7dB, and 0.86 mu m individually.