Photoluminescence Properties of Novel BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) Blue, Green, Orange-Red Emitting Phosphors for White Light Emitting Diodes


Yıldız E., Erdoğmuş E., Annadurai G.

Journal of Applied Spectroscopy, cilt.91, sa.4, ss.852-857, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 91 Sayı: 4
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s10812-024-01793-x
  • Dergi Adı: Journal of Applied Spectroscopy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Chemical Abstracts Core, INSPEC
  • Sayfa Sayıları: ss.852-857
  • Anahtar Kelimeler: BaLiZn3(BO3)3, phosphor, photoluminescence, white light-emitting diode, X-ray diffraction
  • Yozgat Bozok Üniversitesi Adresli: Evet

Özet

A new class of BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) phosphors were synthesized with a solid- state reaction method. The minor concentrations of various rare earth (Tb3+, Dy3+, and Sm3+) ions and transition metal (Pb2+) ions activated in the BaLiZn3(BO3) host matrix were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence spectroscopy. The XRD results of BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) phosphors confirmed that all the samples have a monoclinic phase. SEM studies revealed that the morphology of BaLiZn3(BO3)3:RE (RE = Sm3+, Tb3+, Dy3+, and Pb2+) phosphors was irregular. The photoluminescence emission and excitation spectra show that these phosphors can be effectively excited by near-ultraviolet light-emitting diodes (n-UV), and they all exhibit an efficient orange-red (Sm3+, 4G5/2 → 6H7/2), green (Tb3+, 5D4 → 7F5), yellow (Dy3+, 4F9/2 → 6H13/2), and blue (Pb2+, 3P1 → 1S0) emission. All of the above results confirmed that the obtained phosphors could be a potential candidate for n-UV-excited WLEDs.