Highly dispersive optical solitons in the nonlinear Schrodinger's equation having polynomial law of the refractive index change


Zayed E. M. E., Alngar M. E. M., El-Horbaty M. M., Biswas A., Ekici M., Zhou Q., ...Daha Fazla

INDIAN JOURNAL OF PHYSICS, cilt.95, sa.1, ss.109-119, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 95 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1007/s12648-020-01694-7
  • Dergi Adı: INDIAN JOURNAL OF PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chemical Abstracts Core, INSPEC, zbMATH
  • Sayfa Sayıları: ss.109-119
  • Anahtar Kelimeler: Highly dispersive solitons, Polynomial law, 060, 2310, 060, 4510, 060, 5530, 190, 3270, 190, 4370, TRAVELING-WAVE SOLUTIONS, QUINTIC-SEPTIC LAW, ANTI-CUBIC NONLINEARITY, NONLOCAL NONLINEARITY
  • Yozgat Bozok Üniversitesi Adresli: Evet

Özet

In this paper, we apply the unified Riccati equation expansion method, as well as two forms of auxiliary equation methodology, to find highly dispersive optical solitons in the nonlinear Schrodinger's equation having a polynomial law of the refractive index change. Bright, dark and singular solitons as well as periodic and Jacobi elliptic solutions are obtained that are presented together with their existence criteria.