Journal of Applied Spectroscopy, cilt.90, sa.3, ss.717-722, 2023 (SCI-Expanded)
Sm3+ doped and RE3+ (RE = Dy, Er, Gd, La, Nd, Tb)-co-doped CaB6O10 phosphors were prepared at 800°C by the solid-state reaction method. The obtained powders were structurally characterized by X-ray diffraction and Fourier transform infrared analyses. The influences of co-doping rare earth ions on their luminescent properties were also investigated. The emission spectra of the CaB6O10:Sm3+ phosphors consisted of some sharp emission peaks of Sm3+ ions centered at 561, 601, 649, and 708 nm, generating bright orange–red light. The concentration quenching occurred when x equals 0.05 for CaB6O10:xSm3+ phosphor. No remarkable differences were found from excitation spectra of co-doped phosphors CaB6O10:Sm3+, RE3+ in contrast with that of phosphor CaB6O10:Sm3+. The introduction of charge compensator RE3+ (RE = Dy, Er, Gd, La, Nd, Tb) into the host reduced the luminescence intensity of the CaB6O10:Sm3+ phosphors.