POLYMERS, cilt.18, sa.2, ss.1-24, 2026 (SCI-Expanded, Scopus)
Triply Periodic Minimal Surface (TPMS) structures, with their zero average curvature, excellent energy absorption properties, high specific strength and high surface-to-volume ratio, could be used in a wide range of applications, such as the creation of lightweight and durable structures, grafts and implants. In this study, an internal TPMS structure inspiring trabecular bone and an external TPMS structure inspiring cortical bone were combined with infill density and topologically functionally graded to obtain hybrid structures. The aim of the study was to investigate the effects of functional grading on mechanical properties, energy absorption capacity and surface/volume (S/V) ratio and to determine the best combination. The novelty of the study is to obtain hybrid structures close to bone structures with a functional grading approach. The experimental design of the study was performed using the Design of Experiment (DoE) approach and the Taguchi method. Specimens were created according to the established experimental design and fabricated using a Masked Stereolithography (mSLA)-type 3D printer with bio-resin. The fabricated structures were subjected to compression tests; the results were examined in terms of deformation behavior, first peak, maximum force, energy absorption, specific energy absorption and S/V ratio. The optimal structures for defined input parameters were determined using signal-to-noise (S/N) ratios and ANOVA results. Deformations for diamond and primitive specimens began as shear band formation. Deformations for Neovius structures were mostly as brittle fracture. The highest first peak of 18.96 kN was obtained with the DN specimens, while the highest maximum force of 23.77 kN was obtained with the ND specimens. The best energy absorption property was also obtained with ND. The highest S/V ratio was 5.65 in the GP specimens. The statistical analyses were in accordance with the experimental results. Infill density increases decreased the S/V ratio while increasing all other parameters. This demonstrated the importance of mechanical-strength/porosity optimization for bone scaffold surrogate applications in this study.