Bioaerosols downwind from animal feeding operations: A comprehensive review


Kumar P., Tiwari S., Uğuz S., Li Z., Gonzalez J., Wei L., ...More

Journal of Hazardous Materials, vol.480, 2024 (SCI-Expanded, Scopus) identifier identifier

  • Publication Type: Article / Review
  • Volume: 480
  • Publication Date: 2024
  • Doi Number: 10.1016/j.jhazmat.2024.135825
  • Journal Name: Journal of Hazardous Materials
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, Food Science & Technology Abstracts, Geobase, INSPEC, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Keywords: Animal feeding operation, Bioaerosol, Downwind, Human health, Mitigation
  • Yozgat Bozok University Affiliated: No

Abstract

Bioaerosols originating from animal feeding operations (AFOs) may carry pathogens, allergens, and other hazardous biocomponents, such as endotoxins, posing a potential risk to community health and the environment when dispersed downwind. This review summarizes and synthesizes existing literature data on bioaerosols downwind from three major types of AFOs (swine, poultry, and cattle), covering their composition, concentration, dispersion patterns, measurement methodologies, potential health effects, and mitigation strategies. While many of these bioaerosols are typically detected only near AFOs, evidence indicates that certain bioaerosols, particularly viruses, can travel up to tens of kilometers downwind and remain infectious. Despite the critical importance of these bioaerosols, a refined modeling framework to simulate their transport and fate in downwind air has not yet been developed, nor have source attribution methods been established to track their origins in complex agricultural environments where multiple bioaerosols could co-exist. Therefore, it is imperative to further research downwind bioaerosols from AFOs, including their assessment, modeling, source attribution, and mitigation, to address the public health and environmental challenges associated with animal agriculture.