2022 IEEE Future Networks World Forum, FNWF 2022, Virtual, Online, Kanada, 12 - 14 Ekim 2022, ss.94-97
With the rapid development and integration of artificial intelligence (AI) methods in next-generation networks (NextG), AI algorithms have provided significant advantages for NextG in terms of frequency spectrum usage, bandwidth, latency, and security. A key feature of NextG is the integration of AI, i.e., self-learning architecture based on self-supervised algorithms, to improve the performance of the network. A secure AI-powered structure is also expected to protect N extG networks against cyber-attacks. However, AI itself may be attacked, i.e., model poisoning targeted by attackers, and it results in cybersecurity violations. This paper proposes an AI trust platform using Streamlit for N extG networks that allows researchers to evaluate, defend, certify, and verify their AI models and applications against adversarial threats of evasion, poisoning, extraction, and interference.