Optic and dielectric properties of different amount NiFe 2 O 4 nanoparticles loaded hydrogels: Synthetic circuits applications


Okutan M., Coskun R. , Ozturk M., Ozsucu C., Yalcin O.

ECS Journal of Solid State Science and Technology, vol.7, no.8, 2018 (Journal Indexed in SCI Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 7 Issue: 8
  • Publication Date: 2018
  • Doi Number: 10.1149/2.0131808jss
  • Title of Journal : ECS Journal of Solid State Science and Technology

Abstract

© The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. Loaded hydrogels with different amount (2.5%, 5.0%, 7.5% and 10.0%) NiFe 2 O 4 nanoparticles have been prepared for elastic optoelectronic devices in nano size via the copolymerization technics. All samples have been characterized by the UV-Vis absorption spectroscopy. The resistance changes were analyzed by calculating from the slope of the current-voltage plots. The optical band gaps of the NiFe 2 O 4 nanoparticles loaded hydrogels decreases with increase of loading of nanoparticles amount. At room temperature (RT), frequency and applied bias voltage dependence of complex impedance, electric modulus, tangent factor and ionic conductivity have been studied with the impedance spectroscopy (IS). In addition, frequency and applied bias voltage of dependence on dielectric properties for NiFe 2 O 4 nanoparticles loaded hydrogels were compared with each other. Frequency evolution of the dielectric properties are drastically effected interface and electrode polarization. The lowest and highest values of the ε and ε were determined for 10% and 2.5% loaded NiFe 2 O 4 nanoparticles depend on applied bias voltage. The complex impedance based Cole-Cole diagrams and their adopted to Smith-Chart have been analyzed for synthetic equivalent resistance-capacitance circuits via frequency. The UV-Vis absorption values decreases and the conductivity values increases with increase because of increasing NiFe 2 O 4 nanoparticles amount and the grain size of loaded hydrogels structure in general. Different amount NiFe 2 O 4 nanoparticles loaded hydrogels will provide great benefits for optoelectronics and non-linear optical applications in the nanotechnology and photovoltaic devices.